Artificial Pancreas

Improved blood glucose regulation using
(i) frequent subcutaneous and
(ii) infrequent blood glucose measurements

B. Wayne Bequette, Sandra Lynch and Francis Moussy (U. Conn.)

Presented at the Diabetes Technology Conference, San Francisco, November 2001
Overview

- Motivation
- Sensor/Pump/Control state of the art
- Feedback control
 - State estimation
 - Model predictive control
- Simulation results
 - Single-rate (subcutaneous glucose only)
 - Multi-rate (s.c. & capillary blood glucose)
- Future work
Motivation

DCCT (1983-93) Intensive Therapy Regimen
- 1400 IDDM volunteers

- Advantages - reduced risk of:
 - Eye disease by 76%
 - Kidney failure by 50%
 - Nervous disease by 60%

- Disadvantages
 - Three times risk of hypoglycemic incidences
Feedback Control: Basic Idea

desired glucose concentration ➔ controller ➔ pump ➔ patient ➔ blood glucose concentration

pump speed ➔ pump

insulin flowrate ➔ patient

measured glucose concentration ➔ sensor ➔ controller
Current Practice

- Patient serves as “feedback controller”
- Several “finger pricks”/day for capillary blood glucose measurement
- Multiple injections/day, or continuous infusion
Pump & Sensor Technology

- External (worldwide) & internal (Europe) pumps available
- Many sensors under development
 - Glucose electrodes, microdialysis, non-invasive
- Minimed - FDA approval for 3-day use
 - Glucose electrode
 - Re-calibrate daily w/blood glucose
 - Return to physician for analysis
Control Background

- Many simulation studies
 - IV and s.c. (sensor and infusion)

- Experiments
 - Human - s.c. sensor, s.c. & i.v. infusion, PD control (Shimoda et al., 1997)
 - Animal - venous blood, adaptive control (Fisher et al., 1987)

- Medical Research Group (Shah et al., 2000)
 - Animal - IV sensor and implantable pump

- Our focus - s.c. infusion, s.c. glucose sensor
Motivation for Our Multi-rate MPC Research

- Experience with anesthesia & classical chemical process control
- New/improved sensors (Moussy)
 - Long-term implantable electrode
- State estimation-based model predictive control
 - Frequent samples - s.c. glucose
 - Infrequent samples - capillary blood glucose
- Estimate blood glucose and meal disturbances (frequently), and s.c. sensor sensitivity (infrequently)
Subcutaneous measurements

- Subcutaneous glucose measurement available at frequent intervals
- Use model to:
 - Estimate meal disturbance
 - Estimate blood glucose
Estimation - Basic Idea

Meal disturbance

Insulin infusion rate

IDDM Patient

Sensor

Blood glucose

Measured subcutaneous glucose

Model Feedback

Patient Model

Predicted subcutaneous glucose

Sensor Model

Estimates:
- Blood glucose
- Subcutaneous glucose
- Glucose meal disturbance

Estimator

B. Wayne Bequette
Discrete-time Model

$$x_{k+1} = \Phi x_k + \Gamma u_k + \Gamma^d d_k$$

$$d_{k+1} = d_k + w_k$$

$$y_k = C x_k + v_k$$

Form an augmented state description to perform disturbance estimation
Estimation: Basic idea of Kalman Filter

- Based on expected measurement and process noise, estimate the “maximum likelihood” values for the state variables
- Original formulation is for perfectly modeled systems
- Technique extended for parameter or disturbance estimation (Extended Kalman Filter)
Kalman Filter w/Augmented States

Predictor-corrector equations:

\[\hat{x}^a_{k|k-1} = \Phi^a \hat{x}^a_{k-1|k-1} + \Gamma^a u_{k-1} \]

\[\hat{x}^a_{k|k} = \hat{x}^a_{k|k-1} + L_k \left(y_k - C^a \hat{x}^a_{k|k-1} \right) \]

Augmented state (includes meal disturbance)

Aug. state estimate

Kalman gain

Measured s.c. glucose

Insulin infusion

B. Wayne Bequette
Model Predictive Control

Find current and future insulin infusion rates that best meet a desired future blood glucose trajectory. Implement first "move."

Correct for model mismatch (estimate states), then perform new optimization.
Model Predictive Control

- **Simulation**
 - Neural model - Trajonoski *et al.*
 - Linear model (various) - Parker *et al.*
 - I.V. sensor and infusion

- **Experiment**
 - Linear (GPC) - Kan *et al.*
 - Insulin & glucose infusion, venous blood sampling
Simulation Study Using S.C. Sensor

- Simulated Type I Diabetic
 - 19 State (Sorenson, 1985)
 - Also studied by Parker et al. (1999), among others

- Model for Estimator/Controller
 - Modified Bergman “minimal model”
 - Parameters fit to Sorenson step response
 - Augmented state for meal disturbance
Simulation Results: S.C. Sensor

50 g glucose meal disturbance

5% measurement noise (s.d. = 3.8 mg/dl)

Estimator model assumes first-order lag between blood and s.c. glucose
Simulation Results - S.C. Sensor Degradation

50% sensor sensitivity decrease over 3 days

Motivates additional blood capillary measurement for s.c. sensor calibration
Estimation: Improved (Multi-Rate)

- Problem with s.c. glucose measurement
 - Sensor sensitivity changes
- Solution: Incorporate infrequent blood capillary measurements
- Use model to:
 - Estimate meal disturbance (5 min)
 - Estimate blood glucose (5 min)
 - Update s.c. sensor sensitivity at infrequent intervals (~4 times/day)
Simulation results:
Multirate

5% s.c. noise
(s.d. = 3.8 mg/dl)

2% capillary blood noise
(s.d. =1.6 mg/dl)
Simulation results: Multirate

- Sensor degradation (50% over 3 days)
- Sensitivity estimate

5% s.c. noise
(s.d. = 3.8 mg/dl)
2% capillary blood noise
(s.d. = 1.6 mg/dl)
Proposed Work

- Additional simulation-based studies
- Develop sensor/computer/pump interconnections
 - Glucose sensor
 - Estimation/control algorithms
 - External insulin infusion pump
- Experimental studies
 - Dogs
Implantable Sensor

Figure 4: Implantable Glucose Sensor

Schematic diagram of the sensor's membranes with their functions. Not to scale.

WORKING ELECTRODE:
Coiled Pt wire coated with:
- poly(o-phenylenediamine) film
- GO/albumin/glutaraldehyde

REFERENCE ELECTRODE:
Coiled Ag/AgCl wire

entire sensor coated with Nafion

0.5 mm

Platinum electrode PPD Glucose oxidase/albumin/glut.
Nafion

small electrochem. interferences

H₂O₂

glucose

oxygen

negat. + large mol.
Summary

- State estimation-based model predictive control
- Frequent s.c. glucose measurements
 - Estimate blood glucose and meal disturbance
- Infrequent blood capillary glucose measurements
 - Estimate (update) s.c. sensor sensitivity
- Simulation results
- Future experimental work
Acknowledgments

- Brian Aufderheide
 - Model development

