Rensselaer Magazine
Feature Articles At Rensselaer President's View Reader Mail Staying Connected Alumni News One Last Thing
* *
At Rensselaer
Researchers Isolate Protein Domain Linked to Tumor Progression
Andrea Page-McCaw, assistant professor of biology, and Bernadette Glasheen, senior research specialist, used the common fruit fly in their research.

Biology

Researchers Isolate Protein Domain Linked to Tumor Progression

When a promising cancer drug reached clinical trials in the 1990s, researchers were disappointed by the debilitating side effects of the drug. The drug inhibited a family of enzymes known as matrix metalloproteinases (MMPs). Now, researchers at Rensselaer have shown that creating drugs that inactivate a different part of the MMP enzyme could have the capacity to target the tumor without the damaging side effects.

“The failure of the clinical trials suggests that the proteinases were not only involved in the pathology of the disease, but also in maintaining the normal health of the patient,” says Andrea Page-McCaw, assistant professor of biology and the corresponding author of the study. Page-McCaw and her colleagues, including senior research specialist Bernadette Glasheen and undergraduate student Aashish Kabra, set out to determine the functions of different parts of an MMP enzyme, known as domains.

The researchers used a simple model organism, the common fruit fly. Unlike mouse and other mammal models that have 24 or more different and semi-redundant MMPs, the fly model has only two. This substantially simplifies the problem of understanding function of each domain.

The researchers found that a domain known as the hemopexin domain was important for tissue invasion events. During tissue invasion, cells from one tissue invade into and usually move through another tissue. This pathway is similar to metastasis, where cancer cells spread from the original tumor to other sites in the body. Fly larvae missing the hemopexin domain of Mmp1 had highly distorted or absent head and wings. The growth of such body parts requires tissue invasion. These abnormalities indicate that a hemopexin domain is needed for tissue invasion in fly development, and possibly in cancer metastasis.

The other primary domain in MMPs, the catalytic domain, was extensively targeted by pharmaceutical companies in efforts to block MMP function in cancer. The researchers found that in flies, blocking or removing the catalytic domain caused many different kinds of problems. When the catalytic domain was removed, the larvae could not grow normally because they were unable to make necessary and basic developmental changes in their exoskeletons.

The findings shed light on why inhibiting the catalytic domain in the drug trials would have both the favorable impact of stopping tissue invasion and the unfavorable impact of significant side effects. In the future, inhibiting only the hemopexin domain could be a method to inhibit tissue invasion without inhibiting all other necessary MMP functions.

*   “At Rensselaer” Contents   *
Feature Articles At Rensselaer President’s View Reader Mail Staying Connected Alumni News One Last Thing Back Issues
Rensselaer Polytechnic Institute | About RPI | Academics | Research | Student Life | Admissions | News & Events
Rensselaer (ISSN 0898-1442) is published in Spring, Summer, Fall, and Winter by the Office of Strategic Communications and External Relations, Rensselaer Polytechnic Institute, Troy, NY 12180-3590. Opinions expressed in these pages do not necessarily reflect the views of the editors or the policies of the Institute. ©2009 Rensselaer Polytechnic Institute.